
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of Outer Product for Vehicle Collision Detection in
Automatic Navigation System

Sakti Bimasena – 135230531,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523053@mahasiswa.itb.ac.id, 2sbimasena@gmail.com

Abstract—Automatic navigation systems has grown
rapidly because of the development of sophisticated sensing
technology and computing algorithms. However, vehicle
collision systems right now often use methods that require
high computational power, such as deep learning, that limits
real-time efficiency. This study offers a new method to detect
collisions using a mathematical function known as outer
product. The offered method represents the path of a vehicle
as vector data then uses outer product to calculate the
intersection, it offers a lightweight yet effective alternative to
conventional methods. The implementation shows accuracy
in detecting potential collisions while maintaining computing
efficiency. Testing results show that this method succeeds in
handling many scenarios, like intersecting or parallel paths.
This method would likely be a promising option for real-time
vehicle collision detection in automatic navigation systems

Keywords—Collision detection, automatic navigation

system, outer product, geometric algebra.

I. INTRODUCTION
With the introduction of sophisticated sensing

technologies and computer algorithms, the development of
automatic navigation systems has evolved considerably.
These technologies are essential to modern transportation
because they improve efficiency and safety in a variety of
driving situations. However, vehicle collision detection is
still facing challenges, especially because of changes in the
environment, sensor difficulties, and limited computational
power that affects real-time performance and accuracy.

Intensive computational methods like deep-learning
based object detection framework like YOLOv5 and Mask-
RCNN are widely used in vehicle collision detection
techniques [1], [2]. These methods have been proven to be
very accurate in many situations. Yet, oftentimes these
methods are not efficient, it makes them less fit for real-
time applications. Other than that, Environmental
complexities such as visual obstructions (occlusion), bad
weather, and curved roads can affect the reliability of this
system [3]. Sometimes, the solutions used today fail at
balancing strong performance with computation
simplicity, that is important to solving the problem.

This study introduces a new method to detect vehicle
collisions by using the mathematical function known as
outer product. This method represents vehicle paths as
vector data then uses outer product to calculate the
intersection point. This method offers a computationally

efficient and light alternative to conventional methods.
Because this method can maintain high accuracy while also
reducing computing power requirements, it is expected for
this method to be a strong candidate for real-time use in
automatic navigation systems.

II. THEORETICAL FOUNDATION

A. Geometric Algebra
By adding new products and higher-dimensional things

like bivectors and trivectors, geometric algebra—which
was first developed by Hermann Grassmann and then
improved by William Clifford—expands conventional
vector algebra. This framework provides a coherent
vocabulary for geometry and physics by bringing together
disparate mathematical systems.

Fig. 2.1 Parallelogram area with vector algebra
Source: yos3prens.wordpress.com

Pictured above is a diagram which shows how to

calculate the area of a parallelogram using vectors in vector
algebra. The equation is as follows:

A =∥ 𝑢 × 𝑣 ∥=∥ 𝑢 ∥∥ 𝑣 ∥ 𝑠i𝑛θ

The area of a parallelogram made by vectors u and v is

also equal to the determinant of those vectors. Since
determinants can be negative, Grassman supported the
concept of signed area and volume by introducing the
concept of outer product.

B. Outer Product

The outer product, sometimes referred to as the wedge
product, is a key notion in geometric algebra that offers a
reliable tool for geometric computations and generalizes
the idea of area and volume in higher dimensions.

The outer product of two vectors a and b, denoted as 𝒂 ∧
𝒃, produces a bivector representing the signed area of the
parallelogram (positive or negative) spanned by these
vectors. This operation is antisymmetric, meaning 𝒂 ∧
𝒃	 = 	−𝒃 ∧ 𝒂.

mailto:113523053@mahasiswa.itb.ac.id
mailto:2sbimasena@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Outer product depends on the orientation in which
the two vectors are located. If the path from the first
vector to the second goes anti-clockwise, the end
product is positive and vice versa.

Fig. 2.2 Representation of outer product orientation
Source: informatika.stei.itb.ac.id/~rinaldi.munir/

The magnitude of outer product represents the area

of a parallelogram made by vectors a and b:
∥ 𝑎 ∧ 𝑏 ∥	=	∥ 𝑎 ∥∥ 𝑏 ∥ sin 𝜃

where θ is the angle between a and b. This property is
particularly useful in determining the perpendicularity
and area calculations in various dimensions.

C. Properties and Representation

The outer product possesses several key properties
that make it advantageous for computational
applications:

1. Distributivity: 𝑎 ∧ (𝑏 + 𝑐) 	= 	𝑎 ∧ 𝑏	 + 	𝑎 ∧ 𝑐
2. Zero Product for Parallel Vectors:

 𝑎 ∧ 𝑏	 = 	0	𝑖𝑓	𝑎 ∥ 𝑏
These characteristics make it possible to represent

and manipulate geometric entities efficiently, allowing
for operations like projections, rotations, and
reflections to be carried out without requiring
coordinate transformations. When computational
resources are few in real-time systems, this efficiency
is especially advantageous.

Vectors in geometric algebra are represented in
terms of basis vectors 𝑒!, 𝑒", 𝑒#,			.		.		.		, 𝑒$. For
example, a vector a in ℝ" can be written as 𝑎	 =
	𝑎!𝑒! 	+	𝑎"𝑒". The outer product 𝑎 ∧ 𝑏 in ℝ" can be
explicitly calculated as:

𝑎 ∧ 𝑏	 = 	 (𝑎!𝑏" −	𝑎"𝑏!)(𝑒! ∧ 𝑒")

a1b2 – a2b1 represents the area of the parallelogram

and 𝑒! ∧ 𝑒" is the unit bivector representing the plane
spanned by 𝑒! and 𝑒". In other words, outer product
𝑎 ∧ 𝑏 is scalar area times 𝑒! ∧ 𝑒" bivector unit.

Fig. 2.3 Diagram of vector representation in outer

product
Source: informatika.stei.itb.ac.id/~rinaldi.munir/

D. Application in Calculating the Intersection of
Two Lines

Fig. 2.4 Intersecting lines example
Source: informatika.stei.itb.ac.id/~rinaldi.munir/

Observe the Fig. above, line a passes through point

R and line b passes through point S. Both lines
intersect at point P. To figure out where point P is
located, first assume that 𝑎 = 𝑎!𝑒! 	+	𝑎"𝑒"	&	𝑏 =
𝑏!𝑒! 	+	𝑏"𝑒". P is defined by 𝑝	 = 	𝛼𝑎	 + 	𝛽𝑏, and its
coordinates are:

𝑥% = 𝛼𝑥& + 𝛽𝑥'
𝑦% = 𝛼𝑦& + 𝛽𝑦'

To find 𝛼 and 𝛽, we can substitute the above

equation to get:

𝛼 =
𝑥%𝑦' − 𝑥'𝑦%
𝑥&𝑦' − 𝑥'𝑦&

=
F
𝑥% 𝑦%
𝑥' 𝑦'F

F
𝑥& 𝑦&
𝑥' 𝑦'F

𝛽 =
𝑥%𝑦& − 𝑥&𝑦%
𝑥'𝑦& − 𝑥&𝑦'

=
F
𝑥% 𝑦%
𝑥& 𝑦&F

F
𝑥' 𝑦'
𝑥& 𝑦&F

Therefore,

𝑝 =
F
𝑥% 𝑦%
𝑥' 𝑦'F

F
𝑥& 𝑦&
𝑥' 𝑦'F

𝑎	 +	
F
𝑥% 𝑦%
𝑥& 𝑦&F

F
𝑥' 𝑦'
𝑥& 𝑦&F

𝑏 →
𝑝 ∧ 𝑏
𝑎 ∧ 𝑏 𝑎 +

𝑝 ∧ 𝑎
𝑏 ∧ 𝑎 𝑏

Fig. 2.5 Intersecting line example picture (a)
Source: informatika.stei.itb.ac.id/~rinaldi.munir/

Fig. 2.6 Intersecting line example picture (b)
Source: informatika.stei.itb.ac.id/~rinaldi.munir/

Observe both of the above pictures. In picture a, we

can see that 𝑝 ∧ 𝑎 is identic to 𝑟 ∧ 𝑎. In picture b, we
can see that 𝑝 ∧ 𝑏 is identic to 𝑠 ∧ 𝑏. Therefore,

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

𝑝 =
𝑝 ∧ 𝑏
𝑎 ∧ 𝑏 𝑎 +

𝑝 ∧ 𝑎
𝑏 ∧ 𝑎 𝑏 → 𝑝 =

𝑠 ∧ 𝑏
𝑎 ∧ 𝑏 𝑎 +

𝑟 ∧ 𝑎
𝑏 ∧ 𝑎 𝑏

III. IMPLEMENTATION PROGRAM

The outer product is used to identify intersections
between line segments in the collision detection program,
which is based on the geometric characteristics of vehicle
routes in a 2D plane. The implementation of the collision
detection system It uses Python, with numpy for numerical
operations and matplotlib for graphical output. The
program is structured into modular classes, each focusing
on specific aspects of collision detection and visualization.
The technique guarantees accuracy and computing
efficiency in detecting possible collisions by describing
pathways as vectors.

The program's main data structures are based on the
representation of vehicle path vectors. Each path is defined
by two points, the start and end points. To show
coordinates in 2D space, these points are wrapped in a
custom Point class. Besides that, vehicle paths are modeled
using a Vector class that operations like scalar
multiplication and vector addition. To calculate the
intersection point between the vehicles, those operations
are important.

Fig. 3.1 Custom class used in the program

Source: Author

The core of this program is the VehicleCollisionDetector
class, that has the feature to detect collisions. Outer product
calculations between two vectors is the main function of
this class. Outer product has an important role in
determining if two vectors are parallel or intersecting. This
is how this is implemented:

Fig. 3.2 Outer product calculation implementation
Source: Author

If the outer product of the two vectors are zero, then the
vectors are parallel, meaning there is no chance of
intersecting. On the contrary, if the outer product has a
value other than zero, then the two vectors have a chance
in intersecting somewhere along the way.

Moreover, the program provides utility functions that
help convert points into vector and vice versa. For
example, vector_from_points method can make vectors
based on two points:

Fig. 3.3 Vector_from_point method
Source: Author

These fundamental techniques are used in the program to

calculate the intersection point of two line segments. To
find the location of intersection, find_intersection function
takes the coefficient from outer product into the vector
formula. This implementation is explicitly linked to the
theoretical foundation discussed in section II.B. Other than
that, special situations, like parallel line segments, are
considered in this method.

Fig. 3.4 find_intersection method
Source: Author

With the help of is_point_in_segment function, this

program also validates wether the intersection point that
was calculated is actually within both line segments. This
makes sure that the intersection that was found is valid
geometrically and not the product of extrapolation outside
the defined line segment boundaries.

To support the collision detection logic,
VehiclePathVisualizer class provides visual representation
of vehicle paths and intersection points. To understand the
output of the detection algorithm, visualization is very
important, especially in complex situations. Paths are
plotted in the plot_path method, that marks the start and
end points clearly and uses different colours for each path:

Fig. 3.5 plot_path method
Source: Author

When an intersection is detected, it is highlighted on the

plot with a clear star symbol, as shown in
the plot_intersection method:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig. 3.6 plot_intersection method
Source: Author

To improve readability, the visualiser also controls grid

layouts, legends, and plot titles. Each plot is guaranteed to
be self-explanatory and intuitive thanks to the setup_plot
and add_legend functions.

Initialising vehicle pathways as tuples of Point objects,
which indicate their start and finish coordinates, is the first
step in the entire operation. After that, the
VehicleCollisionDetector receives these trajectories for
examination. The detector computes the outer product,
evaluates whether an intersection exists, and computes the
direction vectors for each pair of pathways. An intersection
is noted and shown if it is located and verified.

The detect_collision method orchestrates the detection
and visualization process:

Fig. 3.7 detect_collision method (a)
Source: Author

Fig. 3.8 detect_collision method (b)
Source: Author

The results are displayed graphically and printed to the

console, providing both a visual and textual understanding
of the collision.

IV. ANALYSIS

The performance and resilience of the collision detection
algorithm were assessed across a variety of scenarios.
Every scenario was created to resemble actual situations
and evaluate how accurate the mathematical model is

Two vehicle trajectories crossed at a distinct crossing
point in the first scenario, which featured intersecting
routes. The intersection was correctly identified by the

computer, which also indicated the collision point in the
visualisation. For example, when Vehicle 1 travelled from
(0,0) to (4,4) and Vehicle 2 travelled from (0,4) to (4,0),
the program successfully located the junction at (2,2) and
presented the outcome. This proved that the program was
accurate in simple situations.

.

Fig. 4.1 Visualization result for the first example

Source: Author

Fig. 4.2 Text result for the first example
Source: Author

To make sure the algorithm doesn't mistakenly detect

collisions when there isn't an intersection, parallel
pathways were evaluated in the second instance. For
instance, the routes taken by Vehicles 3 and 4 from (0,0) to
(4,4) and (0,1) to (4,5) were examined. The software
generated no false positives and accurately determined that
the pathways did not overlap. The program's dependability
in managing parallel paths was confirmed by this case.

Fig. 4.3 Visualization result for the second example

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Source: Author

Fig. 4.4 Text result for the second example
Source: Author

The third case was non-overlapping routes, in which the

segments did not overlap even though the extended lines of
the trajectories should have. The path of Vehicle 5 was, for
instance, specified from (0,0) to (2,2), but the path of
Vehicle 6 extended from (4,0) to (6,−2). The theoretical
intersection point was estimated by the software to be at
(2,2). However, the algorithm correctly deduced that there
was no collision because this point is outside the
boundaries of both segments.

Two pathways were represented in the visualization
without any junction markers, which supported the idea
that the trajectories did not overlap inside their designated
segments. This illustrated the program's capacity to
differentiate between hypothetical and real intersections,
guaranteeing precise collision detection outcomes even in
edge situations where pathways approach but do not
physically collide.

Fig. 4.5 Visualization result for the third example
Source: Author

Fig. 4.6 Text result for the third example
Source: Author

The results' communication was greatly aided by the

visualisation module. The start and finish points of each
trajectory were clearly indicated and colour-coded.
Because the collision points were marked with a
conspicuous star, the output was easy to understand. For
instance, the visualisation supported the program's
analytical findings in the non-overlapping pathways
scenario by displaying the place of contact with a black star
marker at the computed coordinates.

Some restrictions were noted, despite the program's
strong performance in the test cases. It may not accurately
depict curved or non-linear trajectories in real-world
situations since it assumes that all pathways are straight-
line segments. Furthermore, floating-point arithmetic
precision problems were observed, particularly when
almost parallel pathways with little angular deviations
were involved.

All things considered, the application performed well in
correctly identifying collisions, producing insightful
visualizations, and managing a range of test situations.
These findings identify areas for further study and
refinement while showing the approach's potential for car
navigation systems.

V. CONCLUSION

In this study, vehicle collision paths are found and
analyzed by using mathematical methods that use outer
product. By modelling vehicle paths as vectors and using
vector arithmetic to find the intersection points, this
program succeeds in differentiating theoretical
intersections and actual collisions in defined segments. Its
ability to handle many scenarios, like intersecting paths,
parallel paths, and non-overlapping but theoretically
intersecting paths, shows the accuracy of this
implementation.

This method offers a light and computationally efficient
solution to vehicle collision detection, that makes it a
strong candidate to be integrated to automatic navigation
systems where time performance is important. This
program effectively proves its strength in many situations,
ensuring accurate collision detection even in special
situations.

Future research could see the development of this
method to handle more complex paths geometries, like
curved paths, and to incorporate uncertainty management
into practical applications where the influence of the
environment and sensor difficulties are critical. However,
the framework presented here is a starting point in
improving vehicle collision detection algorithms in
contemporary transportation networks.

VI. APPENDIX

The source code for this program can be accessed at this
link

VII. ACKNOWLEDGMENT
As the author of this paper, I would like to express my

sincere gratitude to all parties who have provided support
and inspiration during the writing process so that I can
complete this paper entitled “Application of Outer Product
for Vehicle Collision Detection in Automatic Navigation
System” well. I would like to thank:

1. Ir. Rila Mandala, M.Eng., Ph.D. and Dr. Ir.
Rinaldi, M.T. as the lecturers of IF2123 Aljabar
Linier dan Geometri for the teaching of materials
that have been shared in the Informatics
Engineering class.

https://github.com/sbimasena/Vehicle-Collision-Detector-using-Outer-Product

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

2. Both my parents for always supporting me. Their
presence and positive affirmations always gives
me the strength to finish this paper well.

3. My friends at Informatics Engineering class,
who always cheer me up during the stressful
times of creating this paper.

REFERENCES

[1] Redmon, J., & Farhadi, A. (2018). "YOLOv5: You Only Look Once
- Object Detection.

[2] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). "Mask R-
CNN." IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[3] Badue, C., et al. (2021). "Self-Driving Cars: A Survey." Expert
Systems with Applications.

[4] Munir, Rinaldi. (2023). “Aljabar Geometri (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20
23-2024/Algeo-27-Aljabar-Geometri-Bagian1-2023.pdf

[5] Munir, Rinaldi. (2023). “Aljabar Geometri (Bagian 2)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/20
23-2024/Algeo-28-Aljabar-Geometri-Bagian2-2023.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 28 Desember 2024

Sakti Bimasena - 13523053

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-27-Aljabar-Geometri-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-27-Aljabar-Geometri-Bagian1-2023.pdf

